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In recent years, there has been a growing interest in studying the role of costly punishment in promoting
altruistic behaviors among selfish individuals. Rejections in ultimatum bargaining as a metaphor exemplify
costly punishment, where the division of a sum of resources proposed by one side may be rejected by the other
side, and both sides get nothing. Under a setting of the network of contacts among players, we find that the
largest Laplacian eigenvalue of the network determines the critical division of players’ proposals, below which
pure punishers who never accept any offers will emerge as a phase transition in the system. The critical
division of offers that predicts the emergence of costly punishment is termed as the selfishness tolerance of a
network within evolutionary ultimatum game, and extensive numerical simulations on the data of the science
collaboration network, and computer-generated small-world/scale-free networks support the analytical
findings.
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In classical game theory, players are typically motivated
by self-interest based on the assumption that all players are
rational and uniquely attempt to maximize their own utility
�1�. This self-interest hypothesis de facto rules out any altru-
istic behavior but which arises as a ubiquitous phenomenon
in natural and social systems �2�. Are selfishness and altru-
ism really mutually exclusive? Recent years have witnessed
an enormous effort to explore the hidden mechanism that
enables altruistic cooperation to be sustained among selfish
individuals. Many behavioral experiments have been con-
ducted among samples of diverse people, in which several
metaphorical games with exceptionally simple rules are used
to study human altruism, providing evidence that without
insisting on self-interest, costly �or altruistic� punishment is,
to a large extent, a key element in understanding the issue of
widespread altruistic behaviors of human societies �3,11,15�.
Costly punishment means that a punisher voluntarily pays a
cost to incur a heavier loss �punishment� on the part of the
selfish opponents �e.g., free-riders in the public goods, selfish
proponents in the ultimatum game, or defectors in the pris-
oner’s dilemma� �4�. Costly punishment has turned out to be
an effective way of promoting altruism, which has appar-
ently extended far beyond the self-interest hypothesis in eco-
nomic rationality.

In contrast to classical game theory, which has difficulties
explaining human altruism, evolutionary game theory pro-
vides a powerful framework to investigate the mechanisms
of altruistic behaviors among selfish individuals �5�. In re-
cent years, there has been an increasing interest in evolution-
ary game on networks, studying the effect of connectivity
structures or interaction patterns represented by the network
of contacts �NOCs� among individuals �6,7�. Many research-
ers have ascribed altruistic behaviors sustainable among
structured population to the network effect, which is catego-

rized into “network reciprocity,” as one of the five funda-
mental rules to the evolution of cooperation �8�.

We focus our attention here on the effect of network to-
pology to the evolution of costly punishment within the ul-
timate game. As one celebrated example to highlight costly
punishment �9�, the ultimatum game assumes two players to
split a sum of provided resources. One randomly chosen
player �the proponent� proposes how to divide it, and his
connected neighbor �the respondent� can either accept or re-
ject the offer. If the respondent accepts, the resources are
divided accordingly. If the respondent rejects, both players
get nothing. Notice that a respondent’s rejection is costly
punishment, in which case the respondent who rejects an
offer pays a cost, the imposition of punishment on the pro-
ponent resulting in a loss of his payoff that he could other-
wise receive from the deal. In terms of classical game theory,
a rational respondent motivated with his self-interest will
accept any nonzero offer, even a minimal positive sum in the
extreme case. Moreover, exempted from punishment, a ratio-
nal proponent should therefore claim almost the whole re-
sources for his own. However, according to a large number
of extensive human studies, about half of the respondents
reject unfair offers that are below 30% of the sum, and the
average of accepted offers is around 50% �9�. That is, a
human player in the ultimate game will reject unfair propos-
als, where costly punishment lifts sanctions on selfish players
and restricts proponents from making excessively selfish of-
fers. Then, a natural question arises, about how much a pro-
ponent offers to others that could incur costly punishment.
We make an attempt to answer this question in the frame-
work of evolutionary game on networks, and find that the
critical minimal acceptable offer is inversely related to the
largest Laplacian eigenvalue of the network on which the
ultimatum game takes place.

In the ultimatum game, consider one randomly chosen
player proposes an offer �as proponent� and his co-player �as
respondent� selects a strategy from the binary choices: Ac-
cepting �A� or Rejecting �R� the offer. To tackle the difficul-
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ties shifting the roles of players, we first symmetrize the
status of both players, assuming that the ultimatum game is a
bidirectional play, i.e., the respondent in turn apply the same
offer to the proponent. Without loss of generality, the sum of
resource to split in every proposal is assumed to be 1, and
each player claims p̄ for himself and offers 1− p̄ for his co-
player. If both players select R, they finalize no deals and get
nothing. If one player selecting A encounters one R, then
they reach one agreement in two deals from which the A
receives 1− p̄ and the R receives p̄ accordingly. If both select
A, each accumulates 1 from the two agreed deals. Therefore,
we have the following payoff matrix to describe the symme-
try ultimatum game:

M = �1 1 − p̄

p̄ 0
� . �1�

Notice that the claim p̄ describes the selfishness degree of
players. The larger p̄ is, the more selfish they are.

Consider that each player Pi �i=1,2�, 2� in the symmetry
ultimatum game adopts a mixed strategy si on the two-
dimension simplex

s1 = � r1

1 − r1
� and s2 = � r2

1 − r2
� , �2�

where the mixed strategy si means that player Pi selects A
with probability ri, or R with probability 1−ri. Therefore,
each player receives his payoff as

u1 = s1
TMs2 and u2 = s2

TMs1 �3�

accordingly, where � · �T denotes the transpose of a vector.
We take into account a population structure described by

the network of contacts, where each player is located on a
vertex of the network, and the interactions among players are
represented by the edges of the NOCs. Each player, labeled
from 1 to n, receives an accumulative payoff according to

ui = �
j�Ni

si
TAsj , �4�

where si= �ri ,1−ri�T is the mixed strategy of player Pi, and
Ni is the set of neighbors connected with Pi on the NOCs.

Motivated from the empirical results of the ultimate game
among human players that about half of the respondents re-
ject unfair offers from excessively selfish proponents �9�, we
address the issue of finding the criticality of selfishness de-
gree, which indicates the emergence of pure costly punishers
under the framework of evolutionary game theory. The role
of empathy studied in �10� provides clues to understand the
fairness induced by behavioristic ultimate games, where
players �as proponents� make offers that are acceptable for
themselves. Note that the principle of empathy can be ap-
plied mutatis mutandis to our model: along an evolutionary
path toward empathy, players are hopefully evolved to the
same accepting probability with respect to a given fixed offer
�11�. Therefore, we design the accepting strategy updating
dynamics to follow a consensus-protocol-type rule �12�, and
the consensus condition of achieving an identical accepting
probability determines the critical selfishness degree pc to
separate two phases: �i� the population reaches a consensus

of a positive accepting probability if the population selfish-
ness degree p̄ is below pc; �ii� otherwise, such a consensus
collapses, and a part of players in the system emerge as
costly punishers who adopt the pure strategy of rejection.

Generally, a player cannot directly acquire the accepting
probabilities of other players, which can be alternatively es-
timated from the normalized payoff of a player. Notice that
the payoff function is positively correlated with the accepting
probability, and has a maximum when all players set their
accepting probabilities as one. Hence, we define the payoff
ratio ũi of player Pi as

ũi =
realized payoff of Pi

possible maximum payoff of Pi
=

1

ki
�
j�Ni

si
TAsj ,

�5�

where ki is player Pi’s degree �the number of all connected
neighbors� as the same as the total amount of resources that
Pi has chance to share. Therefore, ki is the possible maximal
payoff of player Pi that he can receive from the NOCs, and
0� ũi�1 acts as an estimate of the accepting probability of
player Pi.

To fulfill the evolution of empathy following the frame-
work of average-consensus problems, we propose that each
player Pi adjusts his accepting probability by comparing his
payoff ratio ũi with the average level of all his connected
neighbors. Intuitively, if Pi rejects offers with a larger
�smaller� probability compared with his neighbors, he is
hence inclined to increase �decrease� ri to accept �reject�
more. So we have the strategy updating dynamics

ṙi =
1

ki
�
j�Ni

ũj − ũi, �6�

where ri is bounded within �0, 1� to ensure that the mixed
strategy remains a probability vector on the two-dimension
simplex.

Substituting the payoff matrix �1� into Eq. �5� in the vec-
tor form, we have

ũ = r − p̄L̃r , �7�

where ũ= �ũ1 , ũ2 , ¯ , ũn�T, r= �r1 ,r2 , ¯ ,rn�T, and L̃ is the
�normalized� Laplacian matrix of the NOCs, whose diagonal
entries are ãii=1, and an off-diagonal entry ãij�i� j� equals
to −1 /ki if player P j �Ni is one neighbor of player Pi, or
otherwise 0. Moreover, it is very easy to verify that the row-

sum of L̃ is 0. Therefore, Eq. �6� comes to

ṙ = − L̃ũ = − L̃�r − p̄L̃r� = �p̄L̃2 − L̃�r . �8�

Note that all eigenvalues of L̃ are real and nonnegative de-

noted as 0= �̃1��̃2� ¯ ��̃n�2, where the upper bound of
eigenvalues is obtained by applying Gershgorin’s disk theo-

rem �13�. If p̄�1 / �̃n holds, all eigenvalues of p̄L̃2− L̃ are
nonnegative, which asserts the stability of Eq. �8�. In this
case, all players’ accepting probability ri eventually converge

to the null space of p̄L̃2− L̃ spanned by the �right� zero ei-
genvector �1,1 , . . . ,1�T, so that r1=r2= ¯ =rn�r���, i.e.,
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the population reaches the consensus of an identical accept-
ing probability r��� as

r��� = �
i=1

n

li · ri�0� , �9�

where ri�0� is the accepting probability of player Pi at the

initial time, and l= �l1 , l2 , ¯ , ln� is L̃’s normalized left eigen-
vector corresponding to the zero eigenvalue, which is a non-
negative vector from Perron’s theorem �13� So, in a popula-
tion starting from a positive accepting probabilities ri�0�
�0, the strict consensus condition guarantees r����0, indi-
cating that in the consensus state, no pure costly punishers

appear in the game system. On the other hand, if p̄�1 / �̃n, r
diverge to reach the interval boundaries 0 or 1, respectively.
Therefore, there exists the critical selfishness degree pc

=1 / �̃n, and the condition of costly punishment emergence is

p̄ � pc = 1/�̃n, �10�

where �̃n is the largest eigenvalue of L̃ �14�. The sufficiency
and necessity of condition �10� have been hereby established.

Here, there arises another question that addresses the in-
tuitive dependence of players’ accepting probability ri on
their proponents’ claim p̄, which has not been reflected in our
model so far. In particular, when the strict consensus condi-
tion holds, the final steady accepting probability r��� of the
strategy updating dynamics should be expected to reflect
such a pre-assumed dependence. Without loss of generality,
we assume that the average of each respondent’s initial ac-
cepting probability �ri�0�� = f�p̄� is a decreasing function
of the fixed claim p̄, where the angle bracket � • 	 denotes the
average over different realizations of ri�0�. Notice that Eq.
�9� implies that r��� is a convex combination of all players’
initial accepting probability ri�0�, from which we obtain
�r���	=�i=1

n li · �ri�0�	= f�p̄�. Therefore, the final consensus
state r��� preserves the initial dependence of ri�0� on p̄ as
the strategy updating dynamics �Eq. �6�� evolves. It should
be noted that ri�0�’s initial distribution does not influence the
critical selfishness degree. Furthermore, if r��� is required to
be exactly f�p̄�, we can simply add a linear feedback term
−a�ri− f�p̄�� to Eq. �6�, where the tunable positive feedback
gain a reflects the player’s tendency of insisting on the pre-
assumed accepting probability f�p̄�. Therefore, the critical
population selfishness degree of the modified dynamics plus

a linear feedback term is pc
feedback= ��̃n+a� / �̃n

2. In the rest of
this paper, we neglect the feedback term �a=0� for simplicity
and without losing generality, since the case with a nonzero
a�0 can be similarly verified.

To visualize the effectiveness of evolutionary dynamics
�6� and costly punishment emergence condition �10� in a
structured population, we first make numerical simulations
on a scale-free network generated by the Barabási-Albert
�BA� model �16� with 104 vertices and 4�104 edges, the
degree distribution of which reads a power law P�k�
k−�

with the fixed exponent �=3. To initialize the simulation,
assign each player Pi with an accepting probability ri ran-
domly distributed in �0,1�. At every round of the ultimatum
game, each player Pi interacts with his connected neighbors

in the NOCs receiving an accumulative payoff ui according
to Eq. �4�, and then his payoff ratio ũi and the derivative of
his accepting probabilities ri can be calculated according to
Eqs. �5� and �6�, respectively. To employ computer simula-
tions, we discretize the continuous-time form of evolutionary
dynamics �7� by choosing the time interval �=10−2 sec, and
thus, player Pi adjusts his accepting probability ri at the next
time step as follows:

ri�t + 1� → ri�t� + � 1

ki
�
j�Ni

ũj − ũi�� , �11�

where t is the time step. The accepting probability ri is
bounded in �0, 1� during the evolutionary process. Choose a
Lyapunov candidate-function 	 as

	 =
1

2
ũTL̃ũ . �12�

The system evolves until a stationary state is reached, where
the quantity 	 keeps invariant after sufficient time steps �17�.

Varying the population’s selfishness degree p̄, which ap-
pears as a temperaturelike variable in the system, we observe
the fraction of the pure punishers �with accepting probability
r=0� and the stationary value of the Lyapunov candidate-
function 	. As shown in Fig. 1, there exists a phase transition
point pc�0.61, which indicates the criticality of costly pun-
ishment emergence. When p̄� pc, 	=0, and all players hold
the same nonzero accepting probability �the left inset of Fig.
1�a��. When p̄� pc, on the other hand, 	�0, and the accept-
ing probabilities of almost all the players diverge into two
distinct groups: r�=0 and r�=1, respectively �the right inset
of Fig. 1�a��, i.e., a fraction of players in the population
emerge as pure �costly� punishers. As shown in the left inset
of Fig. 1�b�, the fraction of pure punishers in the population
as a function of p̄ exhibits a phase transition at the critical
selfishness degree pc. We calculate the largest Laplacian ei-

genvalue �̃n
BA=1.64�5�, and the predicted critical selfishness

degree 1 / �̃n
BA=0.60�8� according to Eq. �10�, which agrees

well with the numerical simulation. Besides, the simulation
results obtained on the Watts-Strogatz �WS� small-world net-
works �18� are plotted in Figs. 1�c� and 1�d�, which also
shows a phase transition point near the calculated critical

selfishness degree 1 / �̃n
WS=0.62�8�.

We then target the further numerical simulation at a
sample of the science collaboration network �SCN� contain-
ing 9842 vertices and 37786 edges �19�, where a scientist is
a vertex in the network, and there is an edge between two
scientists �represented by vertices� if they co-authored at
least one paper �20�. The calculated selfishness degree

1 / �̃n
SCN=0.58�3� is also verified by the emergence of pure

punishers �or the quantity 	� around p̄=0.6 as shown in Fig.
2.

We further visualize the average accumulative payoff and
the average payoff ratio of pure punishers �with ri=0� and
the remainders �with ri�0� when the selfish degree p̄� pc.
As shown in Fig. 3, the pure punishers who adopt the pure
strategy of rejection have a relatively higher average payoff
ratio compared to other players, and this gap enlarges as p̄
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increases, showing a positive correlation between costly pun-
ishment and the payoff ratio �other than accumulative pay-
off�. Besides, when pc� p̄�0.78, pure punishers gain less

accumulative payoff, implying that a winner does not punish
�21�. However, when p̄�0.78, pure punishers receive more
than the remainders, indicating that costly punishment domi-

(b)(a)

(c) (d)

FIG. 1. The fraction of pure punishers who reject any offer versus the selfish degree p̄, which exhibit a phase transition at the critical
point �a�pc�0.61 for the BA scale-free network, and �c� pc�0.63 for the WS small-world networks �Insets: the distribution of accepting
probabilities versus the players’ individual index with ri in the ascending order when p̄=0.2� pc and p̄=0.8� pc, respectively�. The curves
of the stationary value of 	 versus the selfish degree p̄ are plotted in �b� and �d� for both networks �Insets: the quantity 	 as a function of p̄
near the critical selfish degree pc�. The population structures of �a�–�b� are the BA scale-free networks containing 104 vertices and 4
�104 edges, and those of �c�–�d� are the WS small-world networks of the same size with the rewiring probability 0.25. Each point of the
curves is averaged over 30 groups of different realizations.

FIG. 2. The fraction of pure punishers and the quantity 	 �inset�
versus the selfish degree p̄ on the science collaboration network
containing 9842 vertices and 37 786 edges �Ref. �19��. Each point
of the curves is averaged over 30 groups of different realizations.

FIG. 3. �Color online� The curves of the average total payoff
�solid lines with triangles� and the average payoff ratio �dashed
lines with boxes� of pure punishers �red� and the remainders �blue�
versus the selfish degree p̄. Each point of the curves is averaged
over 30 groups of different realizations.
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nates if the population has an extreme selfishness degree.

Denote 1 / �̃n the selfishness tolerance of a network within
the ultimatum game, which indicates the criticality of selfish
degree to tolerate in a population connected by the network.
We now further observe the topological influence of different
categories of networks on which the ultimatum game is
played.

We first visualize the selfishness tolerance of networks
generated by the WS model �18�, which transit from regular
rings to small-world networks, and finally to completely ran-
dom graphs �22� with increasing the rewiring probability
from 0 to 1. As shown in Fig. 4, the selfishness tolerance of
the WS networks in the ultimatum game is a decreasing
function of the small-world rewiring probability. Moreover,
as further observed in the inset of Fig. 4, the average path
length and the clustering coefficient of the WS networks de-
crease with the increase in the rewiring probability, showing
that selfishness tolerance is positively related with the small-
world NOCs’ average path length and clustering coefficient.
Such a dependence also exists in the scale-free NOCs. With
the clustering enhancement of the BA scale-free networks
through the triad formations proposed by Holme and Kim
�23�, the scale-free networks keep the scale-invariant expo-
nent �=3 with tunable clustering coefficients. Figure 5
shows that the increase in selfishness tolerance depends on
the increase in triad formations, where the clustering coeffi-

cient and average path length increase simultaneously �the
inset of Fig. 5�.

To summarize, in this paper, to study the emergence of
costly punishment in the evolutionary ultimatum game on
networks, we have proposed to fix each proponent’s claim to
reflect the selfishness degree of a homogeneous population,
and to adjust each respondent’s accepting probability in the
ultimatum bargaining with a consensus-protocol-type updat-
ing rule to fulfill the evolution of empathy. We find that a
fraction of players as pure costly punishers emerge after a
phase transition with respect to the population selfishness
degree, and the critical selfishness degree is analytically
predicable with the largest Laplacian eigenvalue of the net-
work. These findings indicate that the structural topology of
a network suffices to determine the selfishness tolerance of a
population in evolutionary ultimatum bargainings, and the
roles of connectivity patterns of complex networks deserve
more investigations in future.
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